Exceptional service in the national interest

SST Simulation Framework (and Complex Memory)

SST Team and Collaborators

S.D. Hammond, G.R. Voskuilen, C. Hughes, A. Awad, A.F. Rodrigues, K.S. Hemmert, M.J. Levenhagen

Center for Computing Research

Sandia National Laboratories, NM

What is SST?

Goals

- Become the standard architectural simulation framework for HPC
- Be able to evaluate future systems on DOE/DOD workloads
- Use supercomputers to design supercomputers

Technical Approach

- Parallel
 - Parallel Discrete Event core with conservative optimization over MPI/Threads
- Multiscale
 - Detailed and simple models for processor, network, & memory
- Interoperability
 - Many components
- Open
 - Open Core, non-viral, modular

http://sst-simulator.org/

Status

- Parallel Core, basic components
- Current Release (7.1)
 - Improved components
 - Modular core/elements
 - More Internal documentation

Consortium

- "Best of Breed" simulation suite
- Combine Lab, Academic & Industry

How can we use SST?

- Virtual prototyping environment for studying complex future node designs
 - Processors, caches, network-on-chip, <u>memory systems</u>/<u>controllers</u> ...

- Simulate and analyze nodes and hardware we don't yet have
 - Use vendor specifications to design virtual environment
 - Use our imagination to design future node designs
- Support software, application and algorithm design and codesign

Example: Non-Volatile Memory

- DIMM: 1+ ranks → ranks consist of 1+ banks + row buffer
- Ancillary structures: write buffer, request buffer, scheduler, wear leveler (Start-Gap), power management
- Key Latencies: tCMD (Command), tRCD (read to row buf), tCL (read col), tBURST (transfer data), tCL_w (write)
- Can model fundamental timing/scheduling parameters

Write Latency & Cancellation

- Write latency stepped by 100 cycles from 100 to 1k
- Mitigation: Write Cancelation
 - Cancels pending write operations in order to service read operations
 - Can hurt performance at low write latencies (higher bank occupancy)
 - Adaptive thresholds can be used to balance read latency with the number of outstanding writes

Multi-Level Memory

- Main memory comprised of NVM and DRAM
 - Capture low cost of NVM and performance of DRAM
- Controller can implement a variety of management policies
 - addMFRPU More Frequent More Recent Previous Use w/Threshold
 - addT Simple Threshold
 - LRU Least Recently Used

Multi-Level Memory Evaluation

256

Lulesh

MiniFE

128

- Fast DRAM (MB) MLM Policy: addMFRPU, varying the threshold and presence of cache
 - Results are application dependent
- Varying amount of DRAM
 - Most applications were insensitive to changes

Multi-Level Memory Cost/Perf

Memory	Cost/Bit	Use
DDR4	1.0	Baseline Configuration
Stacked DRAM	1.25	"Fast" MLM
SRAM Tags	22.0	Storage for MLM meta-data
SRAM Cache	20.0	NV-DIMM Cache
NVRAM	0.133	NV-DIMM

- MLM only useful if cost and performance effective
- Most of the applications have worse performance than DRAM
- NVM systems also much lower cost than DRAM

Exceptional service in the national interest